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This paper demonstrates that thermodynamically consistent lattice Boltzmann
models for single-component multiphase flows can be derived from a kinetic
equation using both Enskog’s theory for dense fluids and mean-field theory for
long-range molecular interaction. The lattice Boltzmann models derived this
way satisfy the correct mass, momentum, and energy conservation equations.
All the thermodynamic variables in these LBM models are consistent. The
strengths and weaknesses of previous lattice Boltzmann multiphase models are
analyzed.
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1. INTRODUCTION

The use of the lattice Boltzmann method (LBM) to study multiphase flows
and phase transitions has increased significantly in recent years. The LBM
is a mesoscopic approach that incorporates microscopic physics with
affordable computational expense. It bridges the gap between molecular
dynamics simulations at the microscopic level and simulations based on
macroscopic conservation laws. The lattice Boltzmann method is especially
useful for complex systems in which the macroscopic governing equations
are not yet determined while the microscopic physics is known. Successful
applications of the lattice Boltzmann methods include multiphase flows in
porous media, (1–3) spinodal decomposition, (4) amphiphilic fluid flow, (5)

Rayleigh–Taylor and Kelvin–Helmholtz instabilities, (6–8) bubbly flows, (9)

and stirred chemical reactions. (10)



Despite notable successes, some work remains to be done to establish
a thermodynamically consistent lattice Boltzmann foundation for multi-
phase flows. By ‘‘thermodynamically consistent,’’ we mean a theory for
non-equilibrium transport phenomena has to recover to thermodynamic
theory for equilibrium state. Indeed, most of the published LBM multi-
phase studies have been restricted to isothermal systems. Consensus has not
yet been reached as to how to incorporate correctly all thermodynamic
quantities including internal energy, free-energy, chemical potential, and
entropy. For many applications, these quantities vary considerably and
must be treated consistently. Also differences exist among the existing
lattice Boltzmann multiphase models. Although some differences can be
expected, we at least need to know the causes of these differences and how
the different models are related to each other in order to know which
model gives the most reliable results.
This paper addresses, at least partially, the above issues. We begin with

the kinetic origin of the lattice Boltzmann method, the continuous Boltz-
mann equation of the kinetic theory, because the lattice Boltzmann equa-
tions are discrete formulations of the continuous Boltzmann equation. (11–13)

To understand the thermodynamics of the LBM multiphase models, one
has to first understand the thermodynamics of the kinetic equation for
multiphase flows. Once we establish a thermodynamically consistent kinetic
theory for multiphase flows, we can derive a thermodynamically consistent
lattice Boltzmann model. Analyses and comparisons of the existing LBM
multiphase models can be carried out using this consistent model.
To simplify analysis, we focus on a one-component dense fluid in this

paper. This analysis can be readily extended to multiple component
systems. Historically, Enskog was the first to study kinetic theory for dense
fluids. (E.g., see ref. 14). The most important contribution of Enskog’s
theory is taking into account the effects of molecular volume on molecular
transport properties. These effects do not exist in an ideal gas but they are
important in a dense fluid. We will use Enskog’s theory as our starting
point. There is one important aspect of the dense fluids that was neglected
in Enskog’s theory: the long-range molecular interaction among molecules.
The importance of the long-range molecular interaction has been demon-
strated in van der Waals’s theory for liquids. (E.g., ref. 16). The theory of
liquids has been a subject of extensive studies for the past several decades.
Excellent equilibrium theories have been established for both homogeneous
and inhomogeneous fluids. In this study, we use mean-field theory to
describe the long-range molecular interactions. (E.g., see ref. 17).
In an earlier study of non-ideal gas flows, He, Shan, and Doolen (18)

proposed a kinetic model that combines Enskog’s theory for dense fluids
and mean-field theory for long-range molecular interaction. A similar model
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was also suggested later by Chen et al. (19) This kinetic model was proved to
recover the correct mass and momentum equations. (20, 21) A key concept in
this kinetic model is the introduction of a local point force to represent the
long-range molecular attraction. There have been questions about whether
this strategy yields the correct energy flux and consequently whether it is
thermodynamically consistent. (22, 23) In this paper, we demonstrate that this
approach is indeed consistent. With a proper extension, the kinetic model
recovers the correct energy transfer equation. The question about the
energy flux in refs. 22 and 23 can be resolved once the total internal
energies, not only the kinetic energy but also the potential energy, are con-
sidered in the energy transport equation.
The rest of the paper is organized as follows: Section 2 briefly descri-

bes the kinetic equation for multiphase flow that combines Enskog theory
for dense fluid and the mean-field theory for long-range molecular interac-
tion. A derivation is given showing that this equation recovers the correct
energy equation. Section 3 outlines how to derive LBM multiphase models
by systematically discretizing the kinetic equation. Section 4 analyzes three
existing types of LBM multiphase models and their relationships. Section 5
concludes the paper.

2. KINETIC THEORY FOR DENSE FLUIDS

Historically, kinetic theory was first developed for studying ideal gas
transport. (14) To extend its application to phase transitions and multiphase
flows, one must incorporate molecular interactions which become increa-
singly important in most fluids as the density increases. The most rigorous
way to incorporate molecular interactions would be starting from the
BBGKY equations. (14, 15) In the theory of the BBGKY hierarchy, the
evolution equation for the single-particle distribution, f(t1, r1), is:

“tf+t1 ·Nr1 f+F ·Nt1 f=FF
“f (2)

“t1
·Nr1V(r12) dt2 dr2 (1)

where F is the external force, t1 and t2 are microscopic velocities,
f (2)(t1, r1, t2, r2) is the two-particle distribution function, and V(r12) is the
pair-wise intermolecular potential. In the BBGKY hierarchy of equations,
the time evolution of the n-particle distribution depends on the (n+1)st
particle distribution. Approximations have to be introduced to close this
formulation.
In this study, we use a simple closure at the level of the two-particle dis-

tribution. To do so, let us divide the space integral domain of the right hand
side of Eq. (1) into two parts: {D1 : |r2− r1 | < d} and {D2 : |r2− r1 | \ d}:
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FF
“f (2)

“t1
·Nr1V(r12) dt2 dr2

=
F
D1

F
“f (2)

“t1
·Nr1V(r12) dt2 dr2+F

D2

F
“f (2)

“t1
·Nr1V(r12) dt2 dr2 (2)

z
I1
z

I2

where d is the effective diameter of molecules. It is known that many
intermolecular potentials can be approximated by the Lennard–Jones
potential, which possesses a short-range strong repulsive core and a long-
range weak attractive tail. In the above partition, the first integral, I1,
describes the short-range molecular interaction dominated by the strong
repulsive force; while the second integral, I2, describes the long-range
molecular interaction which causes a weak attractive force.
Since the short-range molecular interaction is dominated by strong

repulsion, it is essentially a collision process. The rate change of the single-
particle distribution in this process, I1, can be well modeled by Enskog’s
theory for dense fluids: (14)

I1=F
D1

F
“f (2)

“t1
·Nr1V(r12) dt2 dr2

=qW0−brqfeq 3(t−u) ·5N ln(r2qT)+3
5
1C2−5

2
2 N ln T6

+
2
5
52CC : Nu+1C2−5

2
2 N ·u64 (3)

where W0 is the ordinary collision term which neglects particle size; C=
(t−u)/`2RT and C is its magnitude; ‘‘ : ’’ represents the scalar product of
two tensors; r, u, and T are the macroscopic density, velocity and temper-
ature, respectively. feq is the equilibrium distribution function:

feq=
r

(2pRT)3/2
exp 5−(t−u)2

2RT
6 (4)

q is the density-dependent collision probability,

q=1+58 br+0.2869(br)
2+0.1103(br)3+0.0386(br)4+·· · (5)
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where b=2pd3/3m, with d being the diameter and m the molecular mass.
Notice that the q corresponding to van der Waals’ equation of state is:

q=
1

1−br
(6)

which only agrees with Eq. (5) to zeroth order.
The rate of change of the single particle distribution due to long-range

molecular interaction, I2, is neglected in Enskog’s original work. It can be
very important in real fluids as elucidated in van der Waals theory for
liquids. (16) Modern physics has shown that, for most liquids, the radial dis-
tribution function is approximately unity beyond a distance of one molecular
diameter. (15) This implies that f(2)(t1, r1, t2, r2) % f(t1, r1) f(t2, r2) in D2.
This approximation leads to:

I2=F
D2

F
“f (2)

“t1
·Nr1V(r12) dt2 dr2=N 3F

D2

r(r2) V(r12) dr2 4 ·Nt1 f (7)

The term in the bracket is exactly the mean-field approximation for the
intermolecular potential: (17)

Vm=F
D2

r(r2) V(r12) dr2 (8)

Its gradient gives the average force acting on a molecule by the surround-
ing molecules. Assuming the density is a slowly varying variable, we can
expand the density in a Taylor series:

r(r2)=r(r1)+r21 ·Nr+
1
2 r21r21 : NNr+·· · (9)

where r21=r2− r1. Substituting Eq. (9) into Eq. (8), we have:

Vm=−2ar−o N2r (10)

where the coefficients a and o are defined in terms of the intermolecular
potential by:

a=− 12 F
r > d
V(r) dr, o=− 16 F

r > d
r2V(r) dr

a and o are usually assumed to be constant. The integral, I2, subsequently
becomes:

I2=NVm ·Nt1 f (11)
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This form of I2 suggests that the average long-range intermolecular poten-
tial acts on a molecule exactly the same as an external potential. In other
words, the long-range molecular interaction can be modeled as a local
point force. It should be mentioned that the above derivations are based on
the assumption that the density varies showly. Although this assumption
has been used widely in literatures, (17) it should nevertheless be regarded as
an approximation.
Combining Enskog’s theory for dense fluids and mean field theory for

the intermolecular potential, one obtains the following kinetic equation to
describe the flow of dense fluids: (18)

“tf+t ·Nf+F ·Ntf=I1+NVm ·Ntf (12)

where the subscripts have been dropped for simplicity. The macroscopic
fluid density, r, velocity, u, and the temperature, T, are calculated as the
velocity moments of the distribution function:

r=F f dt (13)

ru=F tf dt (14)

3rRT
2
=F
(t−u)2

2
f dt (15)

It should be pointed out that, unlike I2, I1 in general can not be
expressed as production of a single force and velocity gradient of the dis-
tribution function. As a result, the molecular interaction as a whole also
can not be modeled by a single force term, as noticed in refs. 22 and 23.

2.1. Mass and Momentum Equations

Equation (12) is exactly the same as the original Enskog’s equation
except for the additional molecular interaction term NVm ·Ntf. Therefore,
we can follow Enskog’s analysis to derive the following mass and momen-
tum equations using the Enskog–Chapman expansion: (14)

“tr+N · (ru)=0 (16)

“t(ru)+N · (ruu)=rF−rNVm−N[rRT(1+brq)]+N ·P (17)
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where P is the usual viscous stress tensor. This momentum equation can be
rearranged as:

“t(ru)+N · (ruu)=rF−N ·P+N ·P (18)

The pressure tensor, P, has the form:

P(r)=p(r) I+o Nr Nr (19)

where

p(r)=p0(r, T)−or N2r−
o

2
|Nr|2 (20)

The hydrostatic pressure, p0, satisfies the following equation of state:

p0(r, T)=rRT(1+brq)−ar2 (21)

Expression, (19), for the pressure tensor is consistent with the thermody-
namic theory (17, 24) in which the pressure can be derived from a free-energy
functional:

p=r
dY

dr
−Y (22)

where

Y=F 5k(r, T)+o
2
|Nr|26 dr (23)

and k is the free-energy density.

2.2. Derivation of the Equation for Total Energy

Multiplying Eq. (12) by t2/2 and integrating over velocity space, we
obtain the following transport equation for the kinetic energy density,
Ek=3rRT/2:

“tEk+N · (uEk)=−rRT(1+brq) N ·u+N · (l NT)+P : Nu (24)

where the second term on the right hand side is the heat conduction term
and the third term is the viscous dissipation term. Notice that the work
done by the long-range molecular interaction does not contribute to the
transport of the kinetic energy, as observed in refs. 22 and 23. As a result,
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the first term in Eq. (24) differs from the usual compressive work term in
the energy transport equation:

pN ·u ] rRT(1+brq) N ·u (25)

This difference has led to unfounded speculations that modeling long-range
molecular interaction as a local point force is invalid. (22, 23) This point can
be resolved by recognizing that, for fluids with molecular interactions, the
total internal energy must include not only the kinetic energy but also the
intermolecular potential energy: (14, 25, 28, 29)

EV=
1
2 r F

D2

r(r2) V(r12) dr2=
1
2 rVm (26)

The factor 12 is needed so as not to count each interacting pair twice. The
transport equation for the intermolecular potential energy is:

“tEV+N · (uEV)

=
r

2
{“tVm+(u ·Nr1 ) Vm}

=
r

2
3−F

D2

Nr2 · [r(r2) u(r2)] V(r12) dr2+(u ·Nr1 ) F
D2

r(r2) V(r12) dr2 4

=
r

2
3F

D2

r(r2) u(r2) ·Nr2V(r12) dr2+u(r1) ·F
D2

r(r2) Nr1V(r12) dr2 4

=
r

2
F
D2

r(r2)[u(r2)−u(r1)] ·Nr2V(r12) dr2

The continuity equation and Gauss’ theorem for integration have been
used in the above derivation. Notice also that Nr2V(r12)=−Nr1V(r12).
Assuming the macroscopic velocity is slowly varying, we can expand u(r2)
in the following Taylor series:

u(r2)=u(r1)+r21 ·Nu+·· · (27)

With this expansion for u(r2), the transport equation for the potential
energy becomes:

“tEV+N · (uEV)=
r

2
Nu : F

D2

r(r2) r21 Nr2V(r12) dr2 (28)
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Using Eq. (9), one can express the right-hand side of Eq. (28) as:

r

2
Nu : F

D2

r(r2) r21 Nr2V(r12) dr2=Nu : 5ar2I+or NNr+o
2
r N2rI6 (29)

Together, Eqs. (24), (28), and (29) lead to the following transport equation
for the total internal energy density, E=Ek+EV,

“tE+N · (uE)

=−P : Nu+N · (l NT)+P : Nu+o Nu : [N(r Nr)− 12 N · (r Nr) I]
(30)

Equation (30) is exactly what we would expect for the energy transport
equation. The first term on the right hand side of Eq. (30) now possesses
the correct form for the work done by pressure. More importantly, pres-
sure in both the momentum and energy equations are consistent with
thermodynamic theory.
The last term in Eq. (30) warrants further discussion. It is zero for a

homogeneous fluid but it is finite in regions with high density gradients
such as the interface regions. It vanishes when there is no velocity gradient.
Physically, this term stands for the heat generation by the surface tension.
Although this term is not common in the literature, its existence has been
recognized in previous publications. For example, in the framework of
BBGKY theory, this term has been written as: (14, 25)

−N · q −=1
2 F r (2)(r1, r2) Nr2V· (t̄

(2)
1 +t̄ (2)1 ) dr2+N · (P − ·u) (31)

where P − is due to the intermolecular force and it satisfies:

N ·P −=−r F r(r2) Nr2V dr2 (32)

In the framework of mean field theory, it is easy to prove that:

P −=−ar2I−or N2rI−
o

2
|Nr|2 I+o Nr Nr (33)

The averaged variables are defined as:

r (2)f̄=FF f (2)f dt1 dt2 (34)
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where f (2) is the two-particle distribution function and r (2)(r1, r2) is the pair
density:

r (2)=FF f (2) dt1 dt2 (35)

Adopting the assumption of molecular chaos, f (2)(t1, r1; t2r2)=
f(t1, r1) f(t1, r1) g(r1, r2) (25) and assuming the radial distribution function
g(r1, r2) % 1 for large r12, we have:

r (2)=r(r1) r(r2) (36)

r (2)t̄ (2)1 =r(r1) r(r2) u(r1) (37)

r (2)t̄ (2)2 =r(r1) r(r2) u(r2) % r(r1) r(r2) u(r1)+r(r1) r(r2) r21 ·Nu (38)

Substituting Eqs. (36)–(38) into Eq. (31) and taking into account Eqs. (29),
(32) and (33), we have:

−N · q −=ru F r(r2) Nr2V dr2+
r

2
u : F r(r2) r21 Nr2V dr2+N · (P − ·u) (39)

=Nu : 5P −+r
2
F r(r2) r21 Nr2Vdr26 (40)

=o Nu : 5N(rNr)−1
2
N · (r Nr) I6 (41)

which has exactly the same form as the heat generation due to surface
tension in the energy equation, Eq. (30).
It is now clear that the kinetic equation that combines Enskog’s theory

for dense liquids and the mean-field for long-range molecular interaction
indeed recovers the correct mass, momentum, and energy equations. In the
next section, we will proceed to derive the consistent LBM model for single-
component multiphase flows by discretizing the kinetic equation.

3. THE LATTICE BOLTZMANN MODEL FOR DENSE FLUIDS

In the last section, we have seen that one can combine the Enskog
theory for dense fluids and mean field theory for long-range molecular
interactions to create a valid model for multiphase flows. Any numerical
approach can be used to solve the kinetic equation. In this section, we
will develop a discrete numerical scheme based on the lattice Boltzmann
method.
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The lattice Boltzmann method features synchronized movements of
molecular densities on regular lattices. From the computational point of
view, this synchronization is useful because it enables simple, parallel
computer algorithms. However, it places a restriction on the molecule
movements—the discrete velocities chosen for the transporting molecular
densities are usually the same for all lattice sites. This restriction can be
easily satisfied by isothermal systems. Indeed, most of the previous lattice
Boltzmann applications have been confined to isothermal flows. To study
thermodynamics in which temperature variation exists, the theory must be
extended. In this study, we will discuss an expansion approach for small
temperature variations.
As mentioned before, the lattice Boltzmann method is one special

discrete form of the Boltzmann equation. (11, 12) Like all other numerical
algorithms, LBM tolerates cut-off errors as long as the errors are
negligible. In fact, most existing LBM models neglect terms of order M3

(M is the Mach number). Obviously, this cut-off error does not hamper
LBM applications to nearly-incompressible flows. In this paper, we will
further assume that the variation of the absolute temperature is small in the
domain of interest.
To facilitate our discussion, we introduce:

T=T0(1+h) (42)

where T0 is the average temperature of a system and h is the normalized
temperature variation. With the assumptions of small temperature varia-
tions and small Mach numbers, the equilibrium density distribution can be
approximated by: (26)

feq=
r

(2pRT0)3/2
exp 5− t2

2RT0
6 51+1 t2

2RT0
−
3
2
2 h

+
t ·u
RT0
+
(t ·u)2

2(RT0)2
−

u2

2RT0
6 (43)

Using this equilibrium distribution, the next task is to select a discrete
velocity set, or quadrature, that replaces the moment integrals in calculat-
ing macroscopic variables. The basic procedure for deriving such quadra-
tures has been discussed extensively in refs. 11 and 12 and we will skip the
details. The traditional 7- and 9-velocity lattice for two dimensions and 15-,
19-, and 27-speed lattice for three dimensions are inadequate for this type
of thermal model. Quadratures with higher accuracy are required and one
example can be found in ref. 27.
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Nevertheless, once a sufficiently accurate quadrature is chosen
(ea, a=1, 2,..., N), we can define the discrete distribution function as:

fa(r, t)=waf(r, ea, t) (44)

where wa are the corresponding weight coefficients. If we use the BGK
model with a single relaxation time approximation for the ordinary colli-
sion term and assume:

Ntf % −
t−u
RT
feq

the evolution equation for the discrete distribution function, fa, becomes:

fa(r+eadt, t+dt)−fa(r, dt)=−q
fa−f

eq
a

y+0.5
+

y

y+0.5
Wafeqdt (45)

where dt is the time step and y is the relaxation parameter;

Wa=
(ea−u) · (F−NVm)

RT
−brq 3(ea−u) ·5N ln(r2qT)+3

5
1C2a−

5
2
2 N ln T6

+
2
5
52CaCa : Nu+1C2a−

5
2
2 N ·u64 (46)

Ca=(ea−u)/`2RT and Ca is its magnitude. The equilibrium distributions
have the following forms:

feqa =wa 51+1
t2

2RT0
−
3
2
2 h+t ·u

RT0
+
(t ·u)2

2(RT0)2
−

u2

2RT0
6 (47)

Notice that at least a second-order time integration scheme is necessary
for LBM multiphase models. (18) Otherwise, unphysical properties such as
spurious currents arise in simulations.
The macroscopic variables can be calculated using:

r=C
a
fa (48)

ru=C
a
faea+

dt

2
[rF−r NVm−N(br2qRT)] (49)

3rRT
2
=
3rRT0(1+h)

2
=C

a
fa
(ea−u)2

2
(50)
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The viscosity and thermal conductivity of the above model have the
following forms:

m=yrRT0dt 1
1
q
+
2
5
br2 (51)

l=
5
2
yrR2T0dt 1

1
q
+
3
5
br2 (52)

The implementation of the above model is straight forward. Besides
the need for higher order velocity lattices, the only complication compared
to the ideal-gas LBM model is the calculation of gradients of macroscopic
variables in Wa. Some of these gradients are also involved in previous
isothermal LBM multiphase models. It has been shown that their calcula-
tions are straight forward.

4. ANALYSES OF EXISTING LBM MULTIPHASE MODELS

Using our improved understanding of the thermodynamic foundation
of the lattice Boltzmann method, we now analyze three existing LBM mul-
tiphase models. In this study, we will focus on the following three major
types of LBM models: models based on intermolecular potential, models
based on the free-energy, and an isothermal model based on kinetic theory.
Both the intermolecular potential and the free-energy are important physi-
cal properties of real fluids. There is no doubt that both of them need to be
included in any working model. The problem is how to do it consistently.
As shown next, some weaknesses in existing LBM models are due to
inconsistent assumptions in incorporating the intermolecular potential and
free-energy.
Before proceeding, we acknowledge the important contributions to the

LBM multiphase studies by Rothman and colleagues. (30, 1) The Rothman
model was among the first LBM multiphase models and has inspired many
later studies in this field. However, the highly heuristic modeling of particle
interactions in the Rothman model makes it difficult to incorporate the
microscopic physics quantitatively. We do not discuss the Rothman model
in this paper.

4.1. Models Based on Interparticle Potentials

Using interparticle potentials to model multiphase flows in the LBM
was first proposed by Shan and Chen, (31, 32) although a similar concept was
proposed earlier in the framework of the lattice gas automaton.(33)As discussed
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before, many intermolecular potentials can be approximated by the Lennard–
Jones potential. In practice, however, it is difficult to include the effects of
this potential over the entire interaction range. Models are usually used. For
example, in the kinetic theory proposed in Section 2, the repulsive core was
modeled as a hard sphere in the framework of Enskog’s theory for dense
fluid; while the weak attractive tail was modeled bymean-field theory.
Without using Enskog’s theory and mean-field theory, Shan and Chen

chose to use a nearest-neighbor interaction model to approximate the effect
of the intermolecular potential. Specifically, their force due to the interpar-
ticle potential was assumed to have the form:

F(r, t)=−Gk C
a
wak(r+ea, t) ea (53)

where k(r) is a function of density and G is the strength of the interparticle
potential. The weight coefficient wa is not in the original Shan–Chen model
but is required for non-hexagonal lattices. (This k should not be confused
with the free-energy density in Section 2).
The idea of nearest-neighbor interaction originates from the celebrated

Ising model but may not be appropriate for describing molecular interac-
tions in dense fluids. To be specific, the nearest-neighbor interaction model
only has one characteristic length (the lattice size) and therefore is not suf-
ficient to describe the intermolecular potential. This limitation has an
immediate effect on the choice of k. The natural choice for k would be
k=r since the lattice spacing is usually much larger than the molecular
size (a condition necessary for ensemble averages). However, this choice
completely ignores the effects of the repulsive core. Without a balancing
repulsive core, this choice inevitably leads to ‘‘mass collapse’’—a phenom-
enon in which particle density approaches infinity. (34)

This problem was resolved in the Shan–Chen model by choosing a k
that is proportional to r for small r and tends to a constant for large r.
One choice is k=1− exp(−r). (35) However, as shown below, any choice of
k other than k3 r appears to lead to thermodynamic inconsistencies. (36)

The thermodynamic inconsistency of the Shan–Chen model can be
better explained by examining the pressure tensor. By Taylor-expanding
Eq. (53) about r and recognizing that

N ·P=N(rRT)−F (54)

must be satisfied at equilibrium, one has:

P=5rRT+GRT
2
k2+

G(RT)2

2
1k N2k+

1
2
|Nk|226 I−G(RT)

2

2
Nk Nk

(55)
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This pressure tensor implies that the Shan–Chen model has the two basic
properties of non-ideal gases: the equation of state for non-ideal gases,

p0=rRT+
GRT
2
k(r)2 (56)

and the surface tension (by mechanical definition s=>.−. (pN−pT) dz),

s sc=
GRT
2

F
.

−.
|Nk|2 dz (57)

Indeed, with the proper choices for k(r) and G, the Shan–Chen model can
be used to simulate many phase-separation phenomena and interface phe-
nomena. (31, 32, 3, 9) However, to be consistent with the equation of state in
thermodynamic theory, we must have:

k==2(p0−rRT)
GRT

(58)

which is obviously not proportional to r. With this choice of k (or any
choice other than k3 r), the surface tension by Eq. (57) will be different
from the surface tension required by thermodynamic theory:

s theory3 F
.

−.
|Nr|2 dz (59)

This is the thermodynamic inconsistency of the Shan–Chen model.
There are two other minor issues in the Shan–Chen model. First, the

pressure tensor defined in ref. 32 is incorrect since it does not satisfy
Eq. (54). The correct pressure tensor is given in Eq. (55). The Maxwell
equal-area construction based on Eq. (55) leads to k3 r instead of the
k3 exp(−r0/r) in ref. 32.
Second, the surface tension in Shan–Chen model is actually a numeri-

cal artifact. It comes from the second-order term in the Taylor expansion
of ; a k(r+ea) ea. (See Eq. (55)). Although this term behaves the same way
as the surface tension, its strength is fixed after one chooses G. This creates
difficulties in applications in which an adjustable surface tension is
required. Interestingly, this numerical surface tension is analogous to the
numerical viscosity in LBM-BGK models. Both of them mimic physical
properties but have no physical basis.
The thermodynamic inconsistency of Shan–Chen model is entirely due

to the inappropriate use of the ‘‘nearest-neighbor’’ model to describe the
intermolecular potential. Using an intermolecular potential itself is nothing
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wrong. Once one models the repulsive core and attraction tail separately as
done in Section 2, one is better equipped to simulate multiphase flows
consistently.

4.2. Models Based on Free-Energy

It was first pointed out by Swift et al. (36) that a successful LBM mul-
tiphase model must be consistent with thermodynamics. In other words,
the equation of state, pressure tensor, chemical potential, etc., must be
derivable from the free-energy. For single-component fluids, the free-
energy is defined by Eq. (23) as described by Cahn and Hilliard. (38)

Obviously, the requirement of being able to derive these quantities from the
free-energy is a challenging but important constraint for developing con-
sistent LBM multiphase models.
Unfortunately, unlike the thermodynamic theory for the equilibrium

state where all variables can be determined from a free-energy, there is no
non-equilibrium theory relating the evolution of the density distribution
to the free-energy. In the original free-energy model proposed by Swift
et al., (36, 37) the following constraint was imposed:

C feqeaea=P+ruu (60)

where P is the pressure tensor defined in terms of the free-energy, Eq. (23).
This constraint provides a convenient way to incorporate the free energy
and hence has been widely used as a cornerstone in most of the free-energy-
based LBM multiphase models. (4, 39, 40) There is, however, a hidden flaw in
this constraint. That is, the left hand side of Eq. (60) is the momentum flux
due to molecular motion while the right hand side is the total pressure
tensor. These two properties are identical for an ideal gas but differ for a
non-ideal gases. In a non-ideal gas, both the molecular motion and molec-
ular interaction contribute to the total pressure tensor. The correct con-
straint should be:

C feqeaea=rRTI+ruu (61)

As for how to incorporate the free energy in the model, it must be done by
including a forcing term as discussed in Section 2.
The inconsistency of Eq. (60) has not been challenged before but one

of its consequences, ‘‘lack of Galilean invariance,’’ has been well known in
literature. This undesirable property does not appear at the Euler level of
the Enskog–Chapman expansion, but it enters at the Navier–Stokes level
when the viscous term is derived. To understand how the inconsistent
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definition, Eq. (60), destroys Galilean invariance, let us examine the viscous
stress tensor in the Enskog–Chapman expansion: (37)

P=
n

RT
“t C feqeaea+

n

RT
N ·C (feqeaeaea) (62)

The second term on the right hand side can be further written as:

n

RT
N ·C feq(eaeaea)=n{N(ru)+[N(ru)]T+N · (ru) I}

=rn{Nu+[Nu]T}+n{u Nr+[u Nr]T+N · (ru) I}

=rn{Nu+[Nu]T}−
n

RT
“t{rRTI+ruu)}+O(u3)

The first curly bracket represents the usual viscous stress tensor. The
second curly bracket has no physical interpretation and it actually induces
the lack of Galilean invariance whenever a density gradient exists. To be
consistent, this unphysical term must be cancelled. Obviously, it is can-
celled by the first term on the right hand side of Eq. (62) if and only if:

C feqeaea=rRTI+ruu

Any other constraint including Eq. (60) does not achieve an exact cancela-
tion and consequently causes a lack of Galilean invariance.
The inconsistency of constraint Eq. (60) has been noticed before. Swift

et al. themselves have tried to add density gradient terms to reduce the non-
Galilean invariance. (37) This approach was further extended by Holdych
et al. (39) This modification indeed reduces the lack of Galilean invariance to
order u2, but it does not eliminate the error to order u3 as does the model
proposed in this paper.
There is one scenario in which the model of Swift et al. works consis-

tently: binary fluids with both fluids being ideal gases. In this case, the
constraint Eq. (60) is equivalent to Eq. (61), and consequently, Galilean
invariance is guaranteed.

4.3. He–Shan–Doolen Model

The LBM non-ideal model proposed by He, Shan, and Doolen (18) is a
precursor of the current work. However, there are two additional assump-
tions in HSD model that need some discussion. The first is the assumption
that the temperature is constant. This assumption is understandable
because the HSD model is derived for isothermal systems. This isothermal
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restriction can be removed by retaining the temperature gradient term in
the extra collision term in Enskog equation. The second assumption
neglects all the velocity gradient terms in the extra collision term in Enskog
equation. This assumption does not change the mass or momentum trans-
port except for removing the effects of finite molecular size on viscosity.
However, it does not yield the correct compressible work term. Both of
these assumptions must be avoided for LBM thermal applications.

5. CONCLUSIONS

In conclusion, we have examined the thermodynamic foundations of
the kinetic theory and lattice Boltzmann method for multiphase flow. We
showed that a kinetic equation that combines Enskog’s theory for dense
fluids and the mean-field theory for long-range molecular interaction can
consistently describe non-ideal gases and dense fluid flows. This kinetic
equation was shown to be consistent with thermodynamic theory and
satisfies the correct mass, momentum, and energy transport equations.
Thermodynamically consistent LBM multiphase models can be derived by
systematically discretizing this kinetic equation.
Details are given for deriving the macroscopic energy equation for

dense fluid flows. The energy equation we derived features a new term
describing the surface tension effects. It should be emphasized that both the
kinetic energy and intermolecular potential energy need to be included to
obtain the correct energy equation. The long-range molecular interaction
does not contribute to the transport of kinetic energy but it does affect the
transport of potential energy. The use of a local point force to model the
long-range molecular interaction is justified.
Existing LBM multiphase models were also examined. It was found

that both the intermolecular potentials and free-energy are properties
required to describe dense fluids. Models based on these properties will be
consistent if one incorporates these properties correctly. The thermody-
namic inconsistency of Shan–Chen model is due to using the nearest-
neighbor interaction model to describe the molecular interaction. The lack
of Galilean invariance in the model by Swift et al. is due to an incomplete
constraint for the second moment of the distribution function.
The current work only describes a single-component system. How to

extend it to multiple component systems is of great interest in many prac-
tical applications. We expect the extension is straight forward although one
has to consider interactions between molecules of different species.
Obviously, the molecular interactions are more complex in a multiple
component system than those in a single component system. In addition to
the extension of the current theory to multiple component systems, the
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relationship between phase field theory and the macroscopic equations
derived in this study also warrant additional study. We plan to address
these issues in future publications.
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